- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Manning, M. L. (2)
-
Damavandi, O. K. (1)
-
Elgailani, A. (1)
-
Maloney, C. E. (1)
-
Richard, D. (1)
-
Schwarz, J. M. (1)
-
Vandembroucq, D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Damavandi, O. K.; Manning, M. L.; Schwarz, J. M. (, Europhysics Letters)Abstract Disordered spring networks can exhibit rigidity transitions, due to either the removal of material in over-constrained networks or the application of strain in under-constrained ones. While an effective medium theory (EMT) exists for the former, there is none for the latter. We, therefore, formulate an EMT for random regular, under-constrained spring networks with purely geometrical disorder to predict their stiffness via the distribution of tensions. We find a linear dependence of stiffness on strain in the rigid phase and a nontrivial dependence on both the mean and standard deviation of the tension distribution. While EMT does not yield highly accurate predictions of shear modulus due to spatial heterogeneities, it requires only the distribution of tensions for an intact system, therefore making it an ideal starting point for experimentalists quantifying the mechanics of such networks.more » « less
An official website of the United States government
